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PRECONDITIONED ITERATIVE METHODS FOR NONSELFADJOINT
OR INDEFINITE ELLIPTIC BOUNDARY VALUE PROBLEMS

Jams -H. Bramble
Mathemti cs Department

Cornell University
Ithaca, New York

U.S.A.

and

Joseph E. Pasciak
Brookhaven National Laboratory

Upton, New York
U.S.A.

--Wr consider a Galerkin-Finite Element approximmtion

to ageneral linear elliptic boundary value oroblem

which may be nonselfadjoint or indefinite. W IX o
show how to precondition the equations so that the

resulting systems of linear algebraic equationsI

lead to iteration procedures whose iterative
convergence rates are independent of the number of
unknowns in the solution.

1. INTRODUCION.

In recent years, the application of iterative methods to

preconditioned linear system has been extremely successful in a variety

of complex physical applicatiosm C3,16]. Many articles are available
in the literature which report on the favorable performance of such

methods C3AJ 2].
Tin aspects of a resulting algorithm consist of the

precIdltle and the nadarlying iterative method [18,12]. Various
Iterative methods, the most poilar being the conjugate gradient (CO) and

certain norm form of the CG method, have been considered extensively

both from a theoretical and an experimental viewpoint (sea (103 and the
references therein). It has been ftmatratad that in imneral,
Iterative alprithm with the sam theorical neo rga rates
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converge, in practice, at about the same rate 1. The question of choosing
an appropriate preianditioner is much more difficult. The
preconditioner must in some way be similar to the inverse of the system ,
which is being solved. Consequently, the evaluation of the
preconditloner usually requires the solution of a system of equations and f
so if the method is to result in an improvement of computational
efficiency, the preconditioner must have some property which makes it
easier to solve than the original system. The iterative convergence
rate of the algorithm is extremely sensitive to the choice of
preconditioner. Indeed, the choice of a more anoroeriate
preconditioner may reduce the number of iterations by an order of
magnitude or more in a given problem.

In this paper we illustrate some techniques for analysing
preconditioned iterative methods for nonsymmetric problems. We will
discuss the problem of choosing an appropriate preconditioner and study
two different iterative algorithms. Typical finite element
discretization of an elliptic boundary.value problem leads to a matrix
problem

(1.1) Mc - d.

where N is the "stiffness" matrix associated with the discretization
and is nonsingular and c and d are vectors. We seek a
preconditioner M1 such that 1 is symmetric positive definite,

(M1)-1  Is easier to compute than (MN)I, and (M1 )'I *approximates
in some sense" (M) 1 . System (1.1) can of course be replaced by the

equivalent system

(1.2) Mt IM 1 Wl NC t MiM1 9- 1 d.

The matrix ' I Mt MI -I--l N is symtric positive definite and the
first algorithm is defined by applying the conjugate gradient method
to (1.2). Alternatively, (1.1) is equivalent to the problem

(1.3 t l -1 t-
(1.3) N1  MtMjl Mc aM M N Wd.

1) The nuser of iterations to reach a desired accuraq m vary by at most
a factor of five r.,103.



matrix M M- Pi 1 M although not usually symmetric, is a
symmetric operator with respect to the inner product defined by

<<wV>> a (M1 w') • v

The CG method can be applied to (1.3) in the <.,.> inner product

and leads to Algorithm II of Section 2. Our analysis suggests that the

preconditioned iterative method based on (1.3) is more robust than that

based on (1.2) since results for (1.2) require additional hypotheses. In

fact, we have not been able to obtain results for the scheme based on

(1.2) unless the elements used in the methods are of "quasi-uniform"

size.

We shall present two general theorems which can be used to derive

certain discrete stability estimates. Such estimates lead to bounds on

the iterative convergence rates of algorithms for finding the solution of

matrix equations resulting.from the finfte element discretization of

elliptic boundary value problems which may be nonsymmetric and/or
indefinite. We show how these general results can be applied in a

finite element approximation to the Poincarti prkbiem. Both strategies

depend upon a priori stability estimates for the continuous problem and
use the approximation properties of the discretization to derive the

stability estimate for the matrix problems.
The first theorem leads to a strategy which uses a positive definite

symmetric problem as a preconditioner for a more complicated

nonsymmetric and/or indefinite problem. The problem of the efficient

solution of positive definite problems, although not completely solved,

has been extensively researched. For example, matrices corresponding

to positive definite symmetric problem often have certain diagonal
dominance properties which imply that various sparse matrix packages

E9,113 can be used for their solution. Also, there are "fast solver"

algorithms available for certain elliptic problem on a variety of

domains [5,14,15]. Our analytical results guarantee that the iterative
convergence rate for our algorithm is independent of he number of
unknowns in the system. Thus the cost of convergence to a given

accuracy grows linearly with the size of the problem.
The first strateg is applicable to, for exmple, problem where

the differential operator A can be decomposed Into a symmtric positive
definite operator L and a compact (but not small) perturbation S. The



operators A, L, and B are approximated by discrete operators A,

Lh, and 8h derived by finite elements. The discrete approximation

to the solution u of the original problem is defined as the solution

of

(1.4) (Lh + Bh)U - F.

Problem (1.4) can be replaced by the equivalent problem

1.5) + Bh)U . F

We derive the appropriate stability estimates for (1.5) which guarantee

that the CG method applied, with respect to <<-,.>>, to (1.3) converges

at a rate independent of the numer of unknowns in the discretization. In

addition, the stability results yield immediately estimates for the

discretization error u-U.

Wi give a second theorem which, under additional hypotheses,

provides another stability estimate. This estimate, under a further

restriction, can be used to show that the CG method applied to (1.2)

converges to the solution of (1.2) at a rate which is independent of the
number of unknowns in the discretization.

An outline of the remainder of the paper is as follows. In Section 4

we describe two conjugate gradient algorithms for matrix problems.

Section 3 gives some preliminaries and notation to be used in the paper.

In Section 4 we state the type of estimates needed to guarantee rapid

* convergence for some iterative methods for solving nonsymmetric and/or

Indefinite problem. Two theoreum used to derive the stability estimates

are given in Section 5. In Section 6 we apply the theorem to a finite
element approximation of a general elliptic boundary value problem.

Finally in Section 7 we apply a stability estimate to bound the

discretization error.

€e

2. CONJUGATE GRADIENT ALGORITHIMS.

We describe the algorithm which result from applying the conjugate
gradient method to the preconditioned systim (1.2) and (1.3). In either

case we aisume that we are given an Initial approximation CO to the
solution c of (1.1) and the iterative algorithm produces a sequence of



iterates ct  for 1 0. We stop the iterative procedure when the
residual error d-Nc becomes sufficiently small. We note that applying

the conjugate gradient mthod to preconditioned system as
illustrated in the following algorithm is not-novel however we include

the details for comleteness.

Applying the conjugate gradient method to (1.2) gives the following

algorithm:
t -1ALOIM 1. WN t M 1 4

(1) Wine ro "po "t N,1 1 .t0 )

(2) For I0 define

II
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o;i+ CI+ + * Pi
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Applying the conjugate gradient mthod In the i.,.> inner
product to (1.3) gives the following algorithm:
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3. PRELIMINARIES AND NOTATIONI.

Throughout this paper we shall be concerned with solving boundary
value problem on a bounded domin 0 contained in R2 with
boundary r . To state our stability estimates, we shall make use of

various spaces of functions defined on 2 . The space L2 (2) is the

collection of square integrable functions on a ; that is a function f(x)

defined for (xy) in n is in L2(2) If

ff(xy)2 dxdy <a

The L2(n) inner product is defined by

(f.g) a f f(xy) g(xhy)dxdy for f, g c L2 ().

We shall also use the Sobolev space N (0). Loosely, a function f is
in N (a) if f. U and X are all in L2(0). Thus for

1 functions in H (Q), we can define the Dlrichlet form by

D(fg) If (If Ix +if- 1 dxdy
ax iay

We shall also denote the L2(r) Inner product by

<f.p a fg ds

r

r ansy positive integer ro the Sobolev space of LI(O)-ftaction
-1 rt hl order partial dertvatives belong to LZ(2) will be dented by

lelso let C and C1 for t 0 dent positive nStutes. The

valus of C and C, maybe dlffffu In dOfft pleM mwe, C
* ad CI Mbel alwys be n w nin of the ash pIrmster h defining



the approximation method. Thus C and Ct will always be independent

of the number of. unknowns in the discretization.
To define the approximation of later sections we shall need a

collection of finite element approximation subspaces {Shi, 0< h< 1,

contained in H (n). Typically, finite element approximation subspaces

are defined by partitioning the domain 2 into subregions of size h and

defining Sh to be the set of functions which are continuous on a and

piecewise polynomial when restricted to the subregions (see [4,7,17]

for details). For example, one could partition n into triangles
of size h and define Sh to be the functions which are continuous

on a and linear on each of the triangles. Alternatively, n could

be partitioned into rectangles and Sh could be defined to be the

functions which are continuous on n and bilinear on each of the

rectangles.

4. ESTIMATES FOR THE CONJUGATE GRADIENT METHOD.

Our analysis of iterative algorithms for preconditioned systems is
based on stability estimates for the continuous or ncndiscrete problem
and the error estimates between the continuous solutions and their

discrete approximations. To study the properties of the solutions of
boundary value problems in partial differential equations, it is

.- natural to consider operators in their basis free representations since

complete sets of basis functions are usually too complex to be of much

practical value. Consequently, it is natural to think of the process

of solving for the discrete solution of the finite element equations as a
basis free operator on the finite element subspace Sh of H'(2) . We

represent differentiaT and solution operators by the notation A, B,
L, or T whereas their discrete counterparts shall be respectively

dented A'h L and T.
The CG method can be applied to find the solution I of the problem

(4.1) Lh X Y

where lits a syetric positive definite operator with respect to some

inNe, product (cf. E13]). The CS algorithm quires an initial .guess 16 and
produces an approximation X tttt 8105. It IS



well known that

/

(4.2) IIX-XnUH "2 X-XnIJH

where y is the condition number for Lh and is defined to be thj

ratio of the largest eigenvalue of Lh to the smallest. We note that

if Lh  satisfies the inequality

(4.3) 2 I1W1IH < (Lh W, W)H C1III1 for all W e

* where ('")H denotes the H-inner product, then the condition

number y is bounded by C1/Co . Thus estimates of the type (4.3)

in conjunction with (4.2) lead to convergence estimates for the CG

method applied to (4.1).

The problem of finding the finite element solution in the examples

of later sections can be reduced to solving for the solution X of a

nonsingular operator equation

(4.4) Ah X - Y

where Ah is a nonsymetric and/or nonpositive operator on Sh. We

shall first precondition the system, multiply by the adjoint and

then apply the CG mthod in the appropriate inner product.

We assume that we have a symetric positive definite operator

defined on Sh for a preconditioner. The types of precondi tioners

for which we can get analytic results will be described in later sections.

We note that problem (4.4) can be replaced by the problem of

finding X in S satisfying

(4.5) A; Th AhX AThTh

where A; is the L 2(a) - adjoint of A,,. The CC method with respect
to the L (a) Inner product can be used to solve (4.5). The

eonve e rete of the resulting algrthm is bounded by (4.2) in

the L( none %Mrs T Is bw~dby C/C0  ft w an C and
C, satisfying



glj
2  < 2 2

(4.6&) C i~wi Un tI 11W
L (Q) L t(a L )

In certain applications, estimate (4.6) can be used to derive bounds on

the iterative convergence rate of Algorithm I.-

Alternatively, problem (4.4) is also equivalent to the problem

of finding X in Sh  satisfying

(4.7) T A* T X a Th A* Th Ih h h AhX Thh

The operator B.- Th A Th Ah  is synmmetric positive definite in the

inner product (T-1 W, V). Applying the CG method to the solution ofh
(4.7) in this inner product gives an algorithm which converges at a rate

described by (4.2) where y C1/C0  for any C. and C1  satisfying

(4.8) C (TW ,W) < (Th AhW, AhW) < C,(T- 1 W,W) for all W E S0. h (T Ah)C(~

In applications, estimate (4.8) is used to derive iterative convergence

rates for Algorithm II.

5. STABILITY THEOREM.

In this section we give general results which can be used to derive

* estimates of the form (4.6) and (4.8).

Theorem 1. Let R be a continuous operator and Rh be its discrete

approximation. Assume that the following stability and error estimates

hold:

(5.1) i ul 1 _ C(N(i+Rh) elI(a) + lieu 2 (a)  for all e c Sh'

For any c o 0 there exists C. such that

( 2 R)# 2  + 1 for all * N M.

(5.3) IL2h)Ch 2  (a for all *c N (2).

- * -- 77



Then there exists h0 > 0 such that for h < h0

(5.4) lIeiu~l~ ) _1 Cl(I+Rh)ell.. 1 )  for all e £ sh

H~n H ()

Remark 1. Estimate (5.4) combined with

(5.5) Il(I+Rh)ell l(a) < Clell for all 6 e Sh

guarantees a uniform (independent of h) iterative convergence rate for

the CG iteration for the solution of

(I+Rh) (I+Rn)U = F

where * denotes the adjoint with resoect to the H () inner

oroduct. In our finite element applications, I+Rh ThAh  and

2 < (T1 ee)<C1Jj012  for all e s
H )H (n)

Thus (5.4) and (5.5) will imply (4.8) for the particular examples of

the next section.

Theorem 2. Let T1 and T be continuous operators and Th and T2
h h

be their corresponding discrete approximations. Assume that the following

three estimates hold:

(5.6) CoIIT 1 ulL 2 < 1IT2 ull 2 C CjT) ulI 2 for all u c LU2 (4)

(5.7) B(Tt-Th) uN 2 Ch 2Hull 2  for all u L2(n)
h L (a) L (a)

(5.8) h u 2  1Ch 2IUIL for all uCsh
(5.8LTP l) (n)2M

for 1 " 1,2. Then

(5.9) c0AUR 2  ( 1 2(T1 -1  2 for all Uc S
L (2 M h h -l 2 )CO 2() h



Remark 2. Estimate (5.8) is an inverse property for the operator Th

and in applications is derived from the hypothesis that the mesh

elements are of "quasi uniform" size. Estimate (5.9) coincides with

(4.6) when Ah - (T

Remark 3. The proofs of the above two theorems are simple and

consequently will not be included.

6. THE POINCARE PROBLEM.

To illustrate our approach we consider a finite element

approximation of the Poincari problem in this section. We consider the
following model problem:

-Au + -+ Ku f in

(6.1)
au a
an y- +Yuz0 on r

a2  a2

where A - + L and r are resoectively the normal and
ax ay

tangential directions along r. For simplicity we have considered

constant coefficients in defining the differential equation as well as

the boundary condition. Our results and iterative algorithms extend to
variable coefficient problems without any complications. We also assume

that the solution of (6.1) exists and is unique.

The finite element approximation to (6.1) can then be-defined by the

Galerkin technique. Multiplying (6.1) by an arbitrary function # and

integrating by parts shows that the solution u satisfies

au. u+yu €,
(6.2) D(u.) + (x".) + K(u,#) + < au +u.# (

The finite element approximation U to u is then defined to be the

function U in Sh which satisfies

(6.3) D(U,e) + (R,8) + K(UO) + < U yU.6 (f,9) for all 0 c Sh.
ax ax -,



Equation (6.3) can be used to derive a system of equations of the form

(1.1) defining the discrete solution U, i.e., using a basis-for Sh o

(6.3) gives N equations for the N unknowns defining U in that

basis.

To describe iterative methods for the solution of (6.3) and/or

the corresponding matrix system, we shall need to use some operator

notation. First, we consider the Neumann problem

w- Aw= f in a

(6.4)
aw*-0 on r

Given a function f in L2(S), the solution w of (6.4) is in H2 (S)
if as we shall assume, r is sufficiently smooth. We denote the

solution operator T as the map which takes f to Tf E w. T is a
bounded map of L2(l) into H2(0l). The finite element approximation to
(6.4) is the function' W in Sh satisfying

(6.5) O(w,e) + (W,e) a (fe) for all 0 c sh .

The discrete solution operator Th can then be defined as the map which
takes f to Th f- W. Th is a mao from L2(Q) onto Sh and the
following convergence estimate Is well known (cf. [2]):

(6.6) lI(Th-T)fUl 1 Chfll 2

In a similar manner, we can define solution operators for the following
variational problem:

+ (X,*) - { ,*) * (k-)(z,*)O~xax)

and

0(, * (1,*1 - cO 4

HWe define the solution operators Rlza X end R2w u . The corrusponding
- - -_____ _____
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finite element approximations are given by the solutions X and Y in

Sh satisfying

az

O(xe) + (x.e) - (ke) + (K-1)(z,e) for'all e e Sh

and

D(Ye) + (Y,e) -<c + ywe> for all 8 e Sh

respectively. The discrete solution operators are then defined by

R z X and R w Y and the following convergence estimates hold:ht h

(6.7) IIR -R1 )zlI 2 ChMlz HH (n)

and

(6.8) j(R 2 _ R2) W( 2 < Ch (HII I

LQ ~ H (9)

In terms of operators, problem (6.1) is equivalent to

(I + R1  R2)u- 3TA u Tf.

The existence and uniqueness properties of solutions of (6.1) can be used

to show that for any e > 0 there is a constant C such that

(6.9) I110 2 Cr R(I+R IR 2 )41 2 + C)I 2PH 2
L (Q)L L()

The discrete estimate

*(6.10) AgoD C(1(I.+%,4.1)8I1 + 18 2 fralaCS
(() for l(l 0L Sh

I.

is immedlate from the definition of . Problem (6.3) can be stated

tn terms of operators as

%1 R + R )U a ThhU *T, h
-LIM- ,



Applying Theorem 1 we get the following stability estimate:

(6.11) Coiwl 21(1  IITn 2 2 for all W S

The second inequality in (6.11) can be easily derived from the definitions.
The constants C0  and C1  in (6.10) are independent of the mesh

size h. Now it is easy to check that

(6.12) (Th1 W,V) - D(W,V) + (W,V) for all I,V cSh

Comparing (6.12), (6.11), (4.7) and (4.8) implies that the CG method

applied to

(6.13) ThA; ThAh U.• ThA; Th f

converges with a reduction per iteration which can be bounded

i ndependently of the number of unknewns.
Let N and N respectively denote the *stiffness" matrices

correspnding to (6.3) and (6.5) in a given basis a a (it I=1

for Sh. If the coefficients of a function W in sh  in teram of the
basis 6 are represented by the vector c then

"I "iN

gives the coefficients of Th A! ThA% W in term of S. Consequently,

the sequence of vectors c, generated by Algorithm 11 gives the
coefficients of the sequence of functions generated by the CG method
appli 'd to (6.13). Thus the iterative convergenc esimlates for
the , -thod applied to (6.13) imply iterative cem e rates for

Th .ve procedure is an example ef an iterative ceavergence

analysis in H1(). We also Net that if T Iis mether discretey h
operator on Sh which is sedtv ly ewuvelent to To in th sM that

(6.14) CO(Th W9W) Q ( l) :(iOC. ( ,3) e all w,



then Th can be replaced by T in (6.11).

We next consider an iterative analysis in L ( 2) based on

Theorem 2. Let TI: L2 () H2 (2). denote the solution operator

for problem (6.1) with 0 0, i.e., f-u. The solution operator

satisfies an estimate of the form

(6.15) Co  1 T1 flJLj _ fTfl < C 1T - I f!
L2MIL (n) L2)M

We have restricted to the case of 8 a 0 since (6.15) is well known in

that case. Assume that both T1  and T can be approximated in the same

finite element subspaces and let TI and Th denote the corresponding

discrete solution operators. The following convergence estimates are well

known for a wide class of finite element applications (27]:

(6.16) JI(Th - T1)f n)2 _Ch2lfI 2 )

We finally assume that the inverse properties

(6.17) R (T)'e ) M- 2 090 2 cSh'
L (n) L (9

are also satisfied. Estimates of the type (6.17) can usually be

derived from inverse assumptions for the subspaces. Applying Theorem 2

gives that

(6.18) CoDWII 2 RTh(T ) 1 WDL2 fa)

Estimate (6.18) guarantees that the CG method applied in L2() for the

solution of

(6.19) A;ThThAh XA ThTh f

where A% (T) "1 , will converge to the solution X at a rate which

is Independent of the nmer of unknowns In Sh . The resulting algorithm

does not however correspond to Algorithm I. To guarantee Papid Iterative



convergence rates for Algorithm I we must make additional assumptions.
Again we use the basis 6 for Sh. If W e Sh we denote by CW  the

coefficients of W in the basis B. We requtre that

(6.20) C0 (CW. CW) < (W,W)L2 (< CI(C w' Cw) for all W c Sh

Estimate (6.20) states that the Gram or mass matrix is "equivalent"

to the coordinate inner product. Combining (6.19) and (6.20) implies

(6.21) Co Ic I 2 < IM-1 1 c 2 < C1 IcI

for all N dimensional vectors c. Estimate (6.21) is finally an

estimate which can be applied to guarantee uniform iterative convergence

rates for Algorithm I.

7. AN ESTIMATE FOR THE DISCRETIZATION ERROR.

In order to estimate the discretization error u-U with u and U

defined by (6.2) and (6.3) respectively, we introduce the Hl ()-

* projection Ph onto S It is defined for vcH (£r) by

(7.1) D(Ph v,9) + (p, v,) - D(v,e) + (v,e). for all 0 c Sh

It is well known that Ph satisfiesA

(7.2) i(I-Ph)VIl ( h IH_.

for v C Hr(,,) and some r > 1 which depends on the choice of

Sh(cf. [2,73). In view of (7.2) to estimate u-U we need only consider

Ph U-U. Hence we apply (5.4) to obtain

O-P h U-u INl) CU('+Rhl(PhU-UI N 1 M9

with % rom the definitionsOf R 9 R and R~we

I" that

('+%)(ph -U) Ph(R +1 2) (Ph-m)t.



Hence

1 2
Ph I CuPh(R +R )(Ph-1)u[ 1

from which it follows immediately that

(7.3) Ph u-u 11 H I CO(I-Ph I •Pl I

Thus using (7.2) we obtain the estimate for the discretization error,

Ilu-ull I n _<c- '  lull r •,
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